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ABSTRACT
EcoLexicon  (http://ecolexicon.ugr.es)  is  a  terminological  knowledge  base  on  environmental
science,  whose design  permits  the  geographic  contextualization  of  data.  For  the  geographic
contextualization of LANDFORM concepts, this paper presents a semi-automatic method of extracting
terms associated with named bays (i.e., Greenwich Bay).
Terms were extracted from a specialized corpus, where named bays were automatically identified.
Statistical  procedures were applied for selecting both terms and bays in distributional semantic
models to construct the conceptual structures underlying the usage of named bays. The bays sharing
associated terms were also clustered and represented in the same conceptual network.
The results showed that the method successfully described the semantic frames of named bays with
explanatory adequacy, according to the premises of Frame-based Terminology.
Keywords:  Named bay, Conceptual information extraction,  Geographical  contextualization,  Text
mining, Frame-based Terminology.

RESUMEN
EcoLexicon (http://ecolexicon.ugr.es)  es una base de conocimiento terminológica sobre ciencias
medioambientales,  cuyo  diseño  permite  la  contextualización  geográfica  de  conceptos  de  la
categoría  ACCIDENTE GEOGRÁFICO. Para tal fin, este artículo presenta un método semiautomático
para extraer términos asociados con bahías con nombre propio (e.gr., Bahía de Pensacola).
Los  términos  se  extrajeron  de  un  corpus  especializado,  donde  las  designaciones  de  bahías  se
identificaron automáticamente. Se aplicaron procedimientos estadísticos para seleccionar bahías y
términos, que se proyectaron en espacios semánticos vectoriales, y se emplearon para construir las
estructuras conceptuales que subyacían en el uso de la bahías.
Los resultados  muestran que el  método es apropiado para  describir  los marcos  semánticos  que
evocan las bahías, según las premisas de la Terminología basada en Marcos.
Palabras  clave:  Bahía  con  nombre  propio,  Extracción  de  información  conceptual,
Contextualización geográfica, Minería de textos, Terminología basada en Marcos.
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THE ELECTRONIC RESOURCE EcoLexicon is a multilingual, terminological knowledge
base on environmental science (http://ecolexicon.ugr.es)  that is the practical application of
Frame-based Terminology (Faber, 2012). Since most concepts designated by environmental
terms are multidimensional (Faber, 2011), the flexible design of EcoLexicon permits the
contextualization  of  data  so  that  they  are  more  relevant  to  specific  subdomains,
communicative situations, and geographic areas (León-Araúz, Reimerink & Faber, 2013).
However, the  geographic  contextualization  of  LANDFORM concepts  depends  on knowing
which terms are semantically related to each landform, and how these terms are related to
each other.

This  paper  presents  a  semi-automatic  method  of  extracting  terms  associated  with
named bays (i.e.,  Escambia Bay) as a type of landform from a corpus of English Coastal
Engineering  texts.  The  aim  is  to  represent  that  knowledge  in  a  semantic  network  in
EcoLexicon according to the theoretical premises of Frame-based Terminology.

The rest of this paper is organized as follows. Section 2 provides motivations for the
research,  and  background  on  distributional  semantic  models  and  clustering  techniques.
Section 3 explains the materials and methods applied in this study, namely, the automatic
identification of named bays, the selection procedures for terms and bays in  distributional
semantic models, and the clustering technique for bays sharing associated terms. Section 4
shows  the  results  obtained.  Finally,  Section  5  discusses  the  results  and  presents  the
conclusions derived from this work as well as plans for future research.

Background and Literature Review
Motivations for the Research
Despite the fact that named landforms, among other named entities, are frequently found in
specialized texts on environment, their representation and inclusion in knowledge resources
has  received  little  research  attention,  as  evidenced  by  the  lack  of  named  landforms  in
terminological resources for the environment such as DicoEnviro2, GEMET3 or FAO Term
Portal4.  In  contrast,  AGROVOC5 contains  basically  a  list  of  named  landforms  with
hyponymic information, whereas ENVO6 provides descriptions of the named landforms with
only  geographic  details,  and  minimal  semantic  information  consisting  of  the  relation
located_in (and tributary_of in the case of named rivers and bays).

So far, knowledge resources have limited themselves to representing concepts such as
BAY,  RIVER or  BEACH,  on  the  assumption that  the  concepts  linked to  each of  them are
applicable, respectively, to all named bays, rivers and beaches in the real world. This issue is
evident in the following description of forcing mechanisms acting on suspended sediment
concentrations (SSC) in bays and rivers.

According to Moskalski and Torres (2012), temporal variations in the SSC of bays and
rivers  are  the  result  of  a  variety  of  forcing  mechanisms.  River  discharge  is  a  primary
controlling factor, as well as tides, meteorological  forcing (i.e.,  wind-wave resuspension,
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offshore winds, storm and precipitation), and human activities. Several of these mechanisms
tend to act simultaneously. Nonetheless, the specific mix of active mechanisms is different in
each bay and river. For example, SSC in San Francisco Bay is controlled by spring-neap
tidal  variability, winds,  freshwater  runoff,  and  longitudinal  salinity  differences,  whereas
precipitation and river discharge are the mechanisms in Suisun Bay. In Yangtze River, SSC
is  controlled  by tides  and  wind  forcing,  whereas  river  discharge,  tides,  circulation,  and
stratification are the active forcing mechanisms in York River.

Consequently,  in  a  knowledge  resource,  a  list  of  forcing  mechanism  concepts
semantically linked to  BAY and  RIVER concepts would not represent the knowledge really
transmitted  in  specialized  texts.  To  cope  with  this  type  of  situation,  terminological
knowledge bases should include the semantic representation of named landforms.

To achieve that aim in EcoLexicon regarding named bays, the knowledge should be
represented  in  a  semantic  network  according to the theoretical  premises of Frame-based
Terminology,  which  propose  knowledge  representations  with  explanatory  adequacy  for
enhanced knowledge acquisition (Faber, 2009). Hence, each named bay should appear in the
context of a specialized semantic frame that highlights both its relation to other terms and
the relations between those terms.  The construction of  these  semantic  networks  and the
semi-automatic extraction of terms from a specialized corpus are described in this paper. As
far  as  we  know,  this  framework  has  not  been  studied  in  the  context  of  specialized
lexicography, which constitutes an original aspect of this work.

Distributional Semantic Models
Distributional semantic models (DSMs) represent the meaning of a term as a vector, based
on its statistical co-occurrence with other terms in the corpus. According to the distributional
hypothesis, semantically similar terms tend to have similar contextual distributions (Miller
& Charles,  1991).  The  semantic  relatedness  of  two terms  is  estimated  by calculating  a
similarity measure of their vectors, such as Euclidean distance or cosine similarity (Salton &
Lesk, 1968), inter alia.

Existing  DSMs  can  be  classified,  based  on  two  criteria,  namely,  the  leveraged
distributional  information (Sahlgren,  2008),  and the  underlying language model  (Baroni,
Dinu & Kruszewski, 2014). According to the former criterion, models can be syntagmatic or
paradigmatic.

Syntagmatic  models capture  combinatorial  relations  between  terms,  namely,
non-hierarchical relations such as the effect of an entity on a process (e.g., ...  the  Bay of
Fundy, because of its basin geometry, amplifies  tides); where a process takes place (e.g.,
Wind system changes affect also relative sea level as observed, for example, in the Hudson
Bay); or the location of an entity (e.g., Many of the beaches along eastern Hudson Bay are
characterized  by  boulder  -  strewn tidal  flats).  Such syntagmatic  relations  are  reflected  in
terms that co-occur within the same text region, either sentence, paragraph, or document
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(Manning,  Raghavan  &  Schütze,  2008).  Latent  Sematic  Analysis  (LSA)  (Deerwester,
Dumais,  Furnas,  Landauer  & Harshman,  1990)  is  an  example  of  a  syntagmatic  model,
whereby a term-document matrix of co-occurrences is first built to collect the normalized
frequency of a term in a document, and the Singular Value Decomposition (Jolliffe, 2002) is
then applied to reduce the number of columns to a few orthogonal latent dimensions.

Paradigmatic models are based on taxonomic relations such as hyponymy (e.g.,  The
Bay of Fundy is a low wave  -  energy environment that is dominated by tidal processes) and
meronymy (e.g., Debris litters the bay floor along parts of the developed western shoreline
of  Greenwich Bay). In these methods, a term-term matrix of co-occurrences indicates how
many times context  terms co-occur with a target  term within a  sliding context  window,
which  spans  a  certain  number  of  terms  on  either  side  of  the  target  term.  Hyperspace
Analogue  to  Language  (HAL)  (Lund,  Burges  &  Atchley,  1995)  is  an  example  of  a
paradigmatic model.

According  to  the  second  classification  criterion,  DSMs  are  either  count-based  or
prediction-based. Count-based models calculate the frequency of the terms that occur within
a term’s context (i.e, a sentence, paragraph, document or context window of a certain size).
LSA, HAL, Global Vectors (GloVe) (Pennington, Socher & Manning, 2014), and Correlated
Occurrence Analogue to Lexical Semantic (COALS) (Rohde, Gonnerman & Plaut, 2006) are
examples  of  this  type  of  model.  Prediction-based  models exploit  neural  probabilistic
language models,  which represent  terms by predicting  the  next  term based on previous
terms. Examples of predictive models include the continuous bag-of-words (CBOW) and
skip-gram models  (Mikolov, Chen,  Corrado & Dean,  2013),  Parallel  Document  Context
(Sun,  Guo,  Lan,  Xu,  &  Cheng,  2015),  and  Collobert  and  Weston  model  (Collobert  &
Weston, 2008).

The  applications  of  DSMs  in  lexical  and  computational  semantics  include  the
following:

• Identification of semantic relations. DSMs are useful tools for Terminology, since they
can help identify semantic relations between terms based on corpus data (Bertels &
Speelman,  2014;  Bernier-Colborne & L’Homme,  2015;  Reimerink & León-Araúz,
2017). In addition, knowledge of a few seed terms and their relationships can help to
infer  analogous  relationships  for  other  similar  terms  that  are  nearby  in  the  DSM
(Hearst & Schütze, 1993; Widdows, 2003; Thompson, Batista-Navarro, Kontonatsios,
Carter, Toon, McNaught, Timmermann, Worboys & Ananiadou, 2015).

• Information retrieval. Search engines can locate documents based on synonyms and
related terms as well as matching keywords (Deerwester et al. 1990; Nguyen, Soto,
Kontonatsios, Batista-Navarro & Ananiadou, 2017).

• Word  sense  discrimination  and  disambiguation.  The  vectors  for  each  of  the
occurrences of the same term in a corpus (called context vectors) can be clustered, and
the centroids of these clusters can be treated as word senses. An occurrence of the
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same  ambiguous  term can  then  be  mapped  to  one  of  these  word  senses,  with  a
confidence  level  derived  from  the  similarity  between  the  context  vector  for  this
occurrence and the nearest centroids (Schütze, 1997 and 1998; Pantel & Lin, 2002).

• Use of word vectors as features for automatic recognition of named entities in text
corpora (Turian, Ratinov, Bengio & Roth, 2009; El bazi & Laachfoubi, 2016), and for
representation of proper names (Herbelot, 2015).

Clustering Analysis
Clustering is one of the most important unsupervised learning techniques in data analysis
(Everitt, Landau & Leese, 2001). It classifies objects into groups (clusters) based on shared
features. In hierarchical clustering, objects are successively integrated in inclusive clusters,
depicted in dendrograms (Xu & Wunsch, 2009). Clustering techniques are used in many
disciplines for purposes of Information Retrieval (Manning et al., 2008) and Text Mining
(Feldman & Sanger, 2007), and, increasingly, in Corpus Linguistics (Moisl, 2009).

Work  in  lexical  semantics  that  applies  clustering  techniques  includes,  inter  alia,
analysis of word distribution data in text to derive syntactic and semantic lexical categories
(Bullinaria,  2008;  Katrenko  &  Adriaans,  2008;  Kiss,  1973;  Miller,  1971);  automatic
induction of verb classes from verb selectional preferences extracted from corpus data (Sun
& Korhonen, 2009); automatic metaphor identification in unrestricted text (Shutova, Sun &
Korhonen,  2010);  and  classification  of  verbs  into  semantic  groups  based  upon  the
relationship between words and grammatical constructions (Gries & Stefanowitsch, 2010).

Materials and Methods
Corpus Data
The  terms  related  to  named bays  were  extracted  from a  subcorpus  of  English  texts  on
Coastal  Engineering.  This  subcorpus,  which  comprises  roughly  7  million  tokens,  is
composed  of  specialized  and  semi-specialized  texts,  and  is  an  integral  part  of  the
EcoLexicon  English  Corpus  (23.1  million  tokens)  (see  León-Araúz,  San  Martín  and
Reimerink [2018] for a detailed description).

GeoNames Geographical Database
The automatic detection of the named bays in the corpus was performed with a GeoNames
database dump. GeoNames (http://www.geonames.org) has over 10 million proper names for
645 different geographical entities, such as bays, beaches, rivers, mountains, etc. For each
entity,  information  about  their  normalized  designations,  alternate  designations,  latitude,
longitude,  and  location  name  is  stored.  A daily  GeoNames  database  dump  is  publicly
available as a worldwide text file.

Pre-processing
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After their compilation and cleaning, the corpus texts were tokenized, tagged with parts of
speech,  lemmatized,  and  lowercased  with  the  Stanford  CoreNLP package  for  R
programming language. The multiword terms stored in EcoLexicon were then automatically
matched in the lemmatized corpus and joined with underscores.

Named Bays Recognition
Both  normalized  and  alternate  names  of  the  bays  in  GeoNames  were  searched  in  the
lemmatized corpus. A total of 306 designations were recognized and listed. Nevertheless,
since various designations can refer to the same bay because of syntactic variation (e.g., Bay
of  Fundy and  Fundy  Bay)  and  orthographic  variation  (e.g.,  Choctaw[h]atchee  Bay),  a
procedure was created to identify variants and give them a single designation in the corpus.

In the case of syntactic variations without of, the preposition was automatically added
to the names without it (e.g., Fundy Bay was converted to Bay of Fundy) and matched in the
list  of  recognized designations.  This was only problematic when the variants referred to
different bays, such as the case of Naples Bay (USA) and Bay of Naples (Italy).

Orthographic  variations  were  identified  with  a  matrix  of  the  Levenshtein  edit
distances between the 306 designations. The Levenshtein distance between two strings is the
number of deletions, insertions, or substitutions required to transform the first string into the
second one. As such, the pairs of strings with an edit distance of 1 or 2 were manually
inspected to discover the orthographic changes.

Once the variants were normalized (Table 1) in the lemmatized corpus and joined with
underscores, the number of named bays was 294. They are shown on the map in Figure 1,
with color-coded rectangles that depict their frequency in the corpus. Their latitudes and
longitudes  were  retrieved  from  the  GeoNames  database  dump.  This  reflects  the
representativeness of the corpus in reference to bay locations and their number of mentions.
As shown in Figure 1, most of the named bays are located in the USA.

Variant Normalized designation
Paranague Bay Paranagua Bay
Paranaguo Bay Paranagua Bay
Choctawatchee Bay Choctawhatchee Bay
Fundy Bay Bay of Fundy
Funday Bay Bay of Fundy
Ingleses Bay Bay of Ingleses
Josiah’s Bay Josias Bay
Josiah Bay Josias Bay
Westernport Bay Western Port Bay
Port Phillip Port Phillip Bay
Greenwich cove Greenwich Bay
Halfmoon bay Half Moon Bay

Table 1. Variants referring to the same bay and their normalized designation.
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Figure 1. Map with the location and color-coded frequency of the 294 named bays.

A critical  issue  was the retrieval  of  the  geographical  coordinates  of  the  bays.  Although
latitudes and longitudes could be retrieved from the GeoNames database dump, occasionally,
the same designation referred to bays in different countries. For instance, the corpus only
located False Bay in South Africa. However, GeoNames indicated that bays with the same
name also existed in India, Yemen, the USA, Canada, and Australia. Such cases had to be
resolved by corpus queries.

With regard to the occurrence frequency of the named bays in the corpus, the values
ranged from 127 (Monterey Bay) to only one mention (150 of the 294 named bays). In our
study, only those bays with an occurrence frequency greater than 5 were considered, since
DSMs perform poorly with low-frequency terms (Luhn, 1957). Table 2 shows the 55 named
bays that fulfilled this condition, whereas Figure 2 shows their number of mentions.

Country Named Bays

United States (20)

California State: San Francisco Bay, Suisun Bay, Monterey Bay, San Diego 
Bay, Morro Bay, Back Bay.
Florida State: Escambia Bay, Pensacola Bay, Tampa Bay, Saint Joseph Bay, 
Florida Bay.
State of New York: Long Island Sound, Naples Bay.
State of Rhode Island: Greenwich Bay, Narragansett Bay.
Other States: Chesapeake Bay (Virginia), Siletz Bay (Oregon), Mobile Bay 
(Alabama), Delaware Bay (Delaware)

Australia (5) Victoria: Port Phillip Bay, Western Port Bay, Apollo Bay.

33 J. Rojas-García, P. Faber



Other States: Botany Bay (New South Wales), Shark Bay (Western Australia)
United Kingdom (4) England: Pevensey Bay, Start Bay, Morecambe Bay, Liverpool Bay
Japan (3) Tosa Bay (Shikoku Island), Tokyo Bay (Kanagawa), Kamaishi Bay (Iwate)
Brazil (2) Sepetiba Bay (Rio de Janeiro), Imbituba Bay (Santa Catarina)
Canada (2) Bay of Fundy (Nova Scotia), Hudson Bay (Ontario)
France (2) Baie des Anges (Provence-Alpes-Côte d’Azur), Baie des Veys (Normandy)
Mexico (2) Bay of Campeche (Campeche), Todos Santos Bay (Baja California)
New Zealand (2) Auckland: Bay of Plenty, Tauranga Harbor
South Africa (2) Western Cape: False Bay, Gordons Bay
The Netherlands (2) Wadden Sea: Ley Bay, Dollard Bay
Argentina (1) Samborombon Bay (Buenos Aires)
China (1) Quanzhou Bay (Fujian)
Colombia (1) Buenaventura Bay (Valle del Cauca)
Denmark (1) Kogo Bay (Zealand)
Estonia (1) Tallinn Bay (Harjumaa)
Indonesia (1) Jakarta Bay (Jakarta)
Iran (1) Chabahar Bay (Sistan and Baluchestan)
Ireland (1) Dingle Bay (Munster)
Spain (1) Bay of Biscay (Basque Country)

Table 2. Designations and locations of the 55 named bays whose occurrence frequency was higher than 5.

Figure 2. Designations and number of mentions of the 55 named bays whose occurrence frequency was

higher than 5.
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Term-term matrix construction
After  the  294  named  bays  were  joined  with  underscores  in  the  lemmatized  corpus,  a
count-based DSM was built with the R package  quanteda for text mining.  A count-based
DSM  was  selected  to  obtain  term  vectors  since  this  type  of  DSM  outperforms
prediction-based ones on small-sized corpora of under 10 million tokens (Ars, Willits &
Jones, 2016; Sahlgren & Lenci, 2016).

In the DSM, only  terms larger than 2 characters were considered, and  numbers and
punctuation marks were removed. Additionally, the minimal occurrence frequency was set to
5  so  that  the  co-occurrences  were  statistically  reliable  (Evert,  2007).  A sliding  context
window was set up to span 20 terms on either side of the target term because for small
corpora, large windows lead to larger counts and greater statistical reliability (Rohde et al.,
2006, p. 31; Bullinaria & Levy, 2007, p. 522). Furthermore, when the window is larger, the
relations in the DSM will be more semantic than syntactic (Jurafsky & Martin, 2017, p. 5).
Since  closed-class  words  are  often  considered  too  uninformative  to  be  suitable  context
words (Kiela & Clark, 2014), stopwords, adjectives and adverbs were not used as context
words.

The  resulting  DSM  was  a  4,431×4,431  frequency  matrix  A,  whose  row  vectors
represented the 55 named bays plus the 4,376 different terms inside the context windows of
20 terms on either side of those bays.

Selection of bays and terms for clustering purposes
Subsequently, a 55×4,376 submatrix B was extracted from A, where the rows represented the
55 named bays, and the columns represented the 4,376 terms co-occurring with the bays. To
cluster the bays of B sharing the same associated terms, it was necessary to select both the
bays  and  the  terms  that  best  discriminated  different  groups  of  bays.  This  was  done  by
removing the bays and the terms that could act as random noise and adversely affect the
clustering results (Kaufman & Rousseeuw, 1990). The remainder of this section explains the
selection method of bays and terms for clustering purposes.

An issue often highlighted in the literature on the clustering of rows in a frequency
matrix  abstracted  from corpus  data  is  that  variation  in  document  length  will  affect  the
clustering results.  These documents are thus clustered in accordance with relative length
rather than with a more interesting latent structure in the data (Moisl,  Maguire & Allen,
2006;  Rojas-Garcia,  Faber  &  Batista-Navarro,  2018;  Thabet,  2005).  The  conventional
solution to the problem is to normalize the values in the frequency matrix to mitigate the
effect  of  length  variation.  Normalization  by  mean  document  length  (Spärck,  Walker  &
Robertson, 2000) is widely used in Information Retrieval literature.

Nevertheless,  as  stated  by  Moils  (2011),  there  is  a  limit  to  the  effectiveness  of
normalization, and it has to do with the probabilities with which the terms in the column
vectors occur in the corpus. Some documents in the matrix rows might be too short to give
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accurate  population  probability  estimates  for  the  terms,  and  since  length  normalization
methods accentuate such inaccuracies, the result is that analysis based on the normalized
data inaccurately clusters the rows. One solution consists in statistically ascertaining which
documents are too short to provide good estimates and to remove the corresponding rows
from the matrix.

For that aim, Moisl (2011, pp. 42-45) proposes a formula that calculates the document
length necessary to estimate the probability of each term in the column vectors with a 95%
confidence  level.  Therefore,  the  formula  can  be  applied  to  establish  a  minimum length
threshold for the documents and to eliminate any documents under that threshold.

In our case, a document was considered to be the set of all context windows where a
certain named bay appeared, and thus corresponded to a row of matrix B. As such, we had
55 named-bay documents. Similarly, the length of a document was considered to be the total
number of words appearing in the set of all context windows of a certain named bay. The
document lengths ranged from 4,950 words (for Monterey Bay) to 232 words (for Kamaishi
Bay). Moisl’s (2011) method was then applied to matrix B to determine: (1) which of the 55
named  bays  should  be  eliminated  from  our  analysis;  and  (2)  which  terms  helped  to
distinguish different groups of the retained bays.

Table 3 shows the length for named-bay documents needed by each of the 4,376 terms
in the columns of matrix B so that their population probabilities could be estimated with a
95% confidence level,  according to  Moisl’s (2011)  formula.  The terms in Table  3 were
sorted in ascending order of the required document length.

Index Term
Length needed for named-bay

documents
1 beach 416
2 sea_surface_temperature 475
3 island 530
4 river 574
5 bay 597
6 wave 644
7 hurricane 655
[…] […] […]
325 la_niña 4,927
326 natural_area 4,942
327 criterion 4,944
328 canal 4,944
329 spring 4,952
330 pass 4,957
331 season 4,968
332 organic_material 4,975
[…] […] […]
4,371 swash_flow 522,884
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4,372 morphologic_change 522,884
4,373 locally_generated_wave 522,884
4,374 counter-circulation 522,884
4,375 rip-opposite_megacusp 522,884
4,376 rip_current_experiment 522,884

Table 3. Length needed for named-bay documents (mostright column) associated with each of the 4,376

terms (middle column) co-occurring with the bays, according to Moisl’s (2011) formula.

Since the lowest document-length value needed by the terms was 416 words (for the term
beach in the first row of Table 3), those bays whose document length was smaller than the
minimum length threshold 416 were eliminated from the analysis. This meant that only 29
bays  of  55  were  retained.  As  expected,  the  29  named bays  selected  by  Moisl’s (2011)
method were those with the highest  number of  mentions in the corpus (Figure 2),  from
Monterey Bay (127 mentions) to Shark Bay (12 mentions).

Regarding  the  selection  of  terms,  since  the  maximum  length  of  our  named-bay
documents was 4,950 words, only the first 328 terms in Table 3 were retained for clustering
purposes because their needed document lengths were less than 4,950 words. These results
are plotted in Figure 3, where the 4,376 terms co-occurring with the 55 bays are on the
horizontal axis (sorted in ascending order of the needed document length), and their required
document lengths are on the vertical axis. The red horizontal line indicates the maximum
length of the named-bay documents (4,950 words), and the green vertical line marks the 328
terms whose needed document lengths were equal to or less than the maximum named-bay
document length.

Figure 3. The required document lengths (vertical axis) associated with each of the 4,376 terms (horizontal

axis) co-occurring with the 55 named bays.
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Of the 328 terms selected by Moisl’s (2011) method, only 310 terms co-occurred with the 29
retained bays.  Therefore,  a 29×310 submatrix  C was extracted from  B to group the bay
vectors.  A visualization of  the 310-dimensional  bay vectors  in  a  2-dimensional  space is
shown in Figure 4. This was accomplished by first weighting the frequency matrix  C by
using the log-likelihood association measure (see following section), reducing the number of
dimensions via Singular Value Decomposition (Jolliffe, 2002), and plotting the data points
according to the first two principal-component coordinates.

Figure 4. Visualization of the 29 bay vectors in a 2-dimensional space.

Clustering of named bays and weighting schemes
According to Moisl (2011, pp. 30-31), the 29×310 frequency matrix C was first normalized
by mean document length. Next, we applied a hierarchical clustering technique, using the
squared Euclidean distance as the intervector distance measure and Ward’s Method as the
clustering algorithm (Xu & Wunsch, 2009).

Since it is not clear how strong a cluster is supported by data (Suzuki & Shimodaira,
2004), a means for assessing the certainty of the existence of a cluster in corpus data was
devised.  Multiscale  bootstrap  resampling (Shimodaira,  2004)  is  a  method  for  this  in
hierarchical  clustering, which  is  implemented  in  the  R  package  pvclust (Suzuki  &
Shimodaira, 2006). For each cluster, this method produces a number ranging from zero to
one.  This  number  is  the  approximately  unbiased probability  value  (AU  p-value),  which
represents the possibility that the cluster is a true cluster. The greater the AU p-value, the
greater the probability that the cluster is a true cluster supported by corpus data. An AU
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p-value  equal  to  or  greater  than  95% significance  level  is  most  commonly  adopted  in
research.

In the clustering results, 2 groups of bays, with AU p-values equal to or greater than
95%, were considered (Figure 5). Unfortunately, the existence of only 2 groups with such a
large  number  of  bays  inside  each  of  the  clusters  was  not  conducive  to  appropriately
describing the semantic frames of the bays. As such, the normalization by mean document
length was disregarded because it led to unreliable clustering. Consequently, other weighting
schemes were tested instead.

Figure 5. Dendrogram of the hierarchical clustering of the 29 named bays, along with 2 red rectangles

indicating clusters with red-colored AU p-values ≥ 95% (red values at branches). The matrix was previously

normalized by mean document length, which led to unreliable clustering results.

The frequency matrix  C was  subjected  to  three  weighting  schemes.  First,  the  statistical
log-likelihood measure  (Dunning,  1993)  was  applied  to  calculate  the  association  score
between all  term pairs,  including the named bays (Evert,  2007, pp. 24-30). Research on
computational  linguistics  reveals  that  log-likelihood is  able  to  capture  syntagmatic  and
paradigmatic relations (Bernier-Colborne & Drouin, 2016, p. 58; Lapesa et al., 2014, p. 168)
and to achieve better performance for medium-to-low-frequency data than other association
measures  (Alrabia  et  al.,  2014,  p.  4;  Krenn,  2000).  However,  the  calculation  of  the
log-likelihood scores was modified to cope with these critical situations:

• When the observed frequency was less than the expected one, the score was set to 0,
as  recommended  by  Evert  (2007,  p.  22).  Otherwise,  the  score  would  have  been
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negative showing repulsion between terms, whereas our interest was in the stronger
attraction to each other.

• When a term pair did not co-occur (i.e., its observed frequency was 0), the score was
set to 0. Otherwise, the score would have obtained a low value, indicating a certain
attraction between the pair of terms despite the absence of co-occurrence in corpus
data.

• When  a  term  co-occurred  with  only  one  bay,  the  corresponding  addend  in  the
log-likelihood formula (i.e., the addend where the observed frequency O21 takes part,
according to Evert [2007, p. 25]) was set to 0. Otherwise, the score would have tended
to minus infinity, and its value would have been undetermined.

Secondly, the association scores were transformed by adding 1 and calculating the natural
logarithmic  to  reduce  skewness  (Lapesa  et  al.,  2014).  Finally,  the  row  vectors  were
normalized  to  unit  length  to  minimize  the  negative  effects  of  extreme  values  on  the
Euclidean distance-based clustering technique.

The hierarchical clustering technique was then applied to the weighted matrix C. As a
result, 5 groups of bays with AU p-values equal to or greater than 99% were considered to
be strongly supported by corpus data (Figure 6). Two bays comprised each of the 5 clusters,
which provided evidence that the clustering results with a log-likelihood measure was more
reliable than those with mean document length. Accordingly, this paper focuses on the 10
named bays inside the 5 clusters shown in Figure 6.
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Figure 6. Dendrogram of the hierarchical clustering of the 29 named bays, along with 5 red rectangles

indicating clusters that are strongly supported by corpus data (red-colored AU p-values ≥ 99%). The matrix

was previously weighted by log-likelihood measure, which led to reliable clustering results.

Figure 7 shows a scatter plot of these 5 clusters via Singular Value Decomposition.  The
weighted matrix C was also used to visualize the bay vectors in Figure 4.

Figure 7. Scatter plot of the 5 clusters of bays, strongly supported by corpus data, via Singular Value

Decomposition.

Selection of terms for semantic network construction
With a view to evaluating the procedure for  term selection that  best  captured the terms
related to the 29 named bays for the construction of semantic networks, 5 methods were
devised.

Method One.
A 339×339 squared frequency matrix D1 was built, whose rows represented the 29 named
bays plus the 310 terms selected by Moisl’s (2011) method. The columns also represented
the same bays and terms co-occurring with the target words in the rows. D1 was weighted by
the log-likelihood measure. Then, the scores were transformed by adding 1 and calculating
the natural logarithmic to reduce skewness (Lapesa et al., 2014).

The matrix D1 tested whether the 310 terms selected by Moisl’s (2011) method were
sufficient  to understand and represent  the semantic  frames in  which the 29 named bays
appeared.
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Method Two.
A 3.867×3.867 frequency matrix D2 was built, whose rows represented the 29 named bays
plus the 3.838 terms co-occurring with them. D2 was weighted in the same way as D1. D2
tested whether no term selection method could optimally describe the semantic frames of the
bays.

Method Three.
The number of columns in the weighted matrix D2 was reduced to only two by applying the
innovative dimensionality reduction technique UMAP (Uniform Manifold Approximation
and Projection)  (McInnes  & Healy, 2018).  It  eliminates  information  redundancy among
column variables and helps to identify local latent structures in corpus data. As a result, a
3.867×2 matrix D3 was obtained.

D3 was tested whether such an innovative dimensionality reduction technique applied
to all the terms co-occurring with the 29 bays was an improvement over D2.

Method Four.
In the same way as Moisl’s (2011)  method was used to  select  bays and terms,  another
statistical method was employed to select the terms that best described the 29 bays, based on
Moisl (2015, pp. 77-93). In Corpus Linguistics, Moisl (2015) suggests retaining the term
columns  with  the  highest  values  in  four  statistical  criteria:  raw  frequency,  variance,
variance-to-mean ratio (vmr) and term frequency-inverse document frequency (tf-idf).

Moisl’s (2015)  method was applied  to  a  29×3.838 frequency  matrix,  whose  rows
represented the 29 named bays. The columns represented all the terms co-occurring with
them (excluding the bays). Figure 8 shows the co-plot of the four criteria, z-standardized for
comparability reasons, and sorted in descending order of magnitude. A threshold of up to
1000 was set. This meant that only 847 terms fulfilled all criteria.

We estimated that between 25 and 30 terms would be necessary for a named bay to
describe its semantic frame. A total number of terms ranging from 725 to 870 would thus be
required for the description of the 29 bays. The threshold was set accordingly, so that the
number of selected terms was within the interval 725-870 terms.
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Figure 8. Co-plot of the 4 criteria for term selection: Frequency, variance, vmr, and tf-idf.

An 876×876 frequency matrix D4 was obtained, where the rows represented the 29 named
bays plus the 847 terms selected by Moisl’s (2015) four statistical criteria. D4 was weighted
in the same way as D1.

D4 tested whether a term selection method was needed to appropriately describe the
semantic frame of a named bay.

Method Five.
Finally, the 876 columns in the weighted matrix D4 were reduced to only two columns by
applying the UMAP technique. As a result, an 876×2 matrix  D5 was obtained. D5 tested
whether dimensionality reduction by UMAP, applied to selected terms, was an improvement
over D4.

Terms characterizing each cluster
To ascertain the terms closely associated with each of the 5 clusters for semantic network
construction, the following procedure was used:

1. For each of the 10 named bays in the clusters (Figure 6), a set of the top-30 terms,
most  semantically  related  to  each  bay  according  to  their  cosine  similarities,  was
extracted from the corresponding DSM.

2. For each cluster, the mathematical operation set intersection was applied to the sets of
the top-30 terms most semantically related to both bays in the same cluster. Only the
shared terms with a cosine similarity higher than 0.4 were selected.
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A reduced set of terms was thus obtained for each cluster to describe the named bays, based
on shared associated terms.

Results
Analysis of the term selection methods
For  each  of  the  clusters,  the  term  selection  methods  produced  5  sets  of  terms,  which
characterized them. Those term sets were qualitatively compared to gold standard sets of
terms, manually extracted from the context windows of the 10 bays clustered in Figure 6,
which best  described each of  the  clusters  for  semantic  network construction.  For  space
constraints, only the main results of the comparisons are highlighted:

• The method that systematically produced the best sets of terms characterizing each
cluster for semantic network construction was the Method Four, consisting in term
selection based on Moisl’s (2015) four statistical criteria.

• Method One, which consisted of bay and term selection according to Moisl (2011),
produced sets of terms that could be used to infer the scientific topic in which the bays
of a cluster were involved. However, because of the small number of terms selected
(310  terms  for  29  bays),  the  term  sets  were  not  conducive  to  understandable
knowledge representations because, most of the time, the number of terms was not
sufficient to derive a clear semantic relation between them.

• Method  Two,  with  all  the  3,838  terms  co-occurring  with  the  bays,  produced
meaningful  sets  of  terms,  which were suitable  for  semantic  network construction.
Nonetheless, surprisingly, the number of terms in the sets was lower than that in the
sets obtained with Method Four. The reason was that the number of shared terms in
each cluster with a cosine similarity higher than 0.4 was lower with Method Two, and
higher  with  Method  Four.  In  addition,  for  most  clusters,  some  terms  in  the  sets
obtained with Method Two were not relevant for frame construction.

• Method Three and Method Five, whereby the number of columns was reduced to two
with  the  UMAP  technique,  produced  unreliable  term  sets.  Firstly,  both  methods
selected  some terms with low occurrence frequency that  could be disregarded for
frame description. Secondly, they selected certain terms that were related to only one
of the bays in a cluster. Thirdly, both methods selected some terms that  were not
related to any of the bays in a cluster. Those unrelated terms were associated with
some of the terms that were directed related to the bays in a cluster, but in a thematic
context different from that in which the bays were involved.

For the construction of the semantic frames presented in the next section, Method Four was
thus applied.
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Semantic frames describing the bay clusters
Interestingly, the five clusters in Figures 6 and 7 contained bay pairs located in the same
geographical areas, as shown in Table 4.

Cluster 1
(USA)

Cluster 2
(Australia)

Cluster 3
(USA)

Cluster 4
(USA)

Cluster 5
(Canada)

Escambia Bay
(Florida)

Pensacola Bay
(Florida)

Port Phillip Bay
(Victoria)

Western Port
Bay

(Victoria)

Greenwich Bay
(Rhode Island)

Narragansett
Bay

(Rhode Island)

San Francisco
Bay

(California)

Suisun Bay
(California)

Bay of Fundy
(Nova Scotia)

Hudson Bay
(Ontario)

Table 4. Designations and locations of the bays in the 5 clusters.

For  the  description  of  the  frames,  the  semantic  relations  were  manually  extracted  by
querying the  corpus  in  Sketch  Engine  (Kilgarriff,  Rychly, Smrz  & Tugwell,  2004),  and
analysing knowledge-rich contexts (Meyer, 2001). The query results were concordances of
any elements between the bays in a cluster and related terms in a ±30 span. The semantic
relations were those in EcoLexicon (Faber, León-Araúz & Prieto, 2009), with the addition of
does_not_affect,  not_located_at,  increases,  decreases,  belongs_to,  uses,  simulates,  and
becomes.

In the  first  cluster,  Escambia and  Pensacola  bays are  thematically  related  by
numerical parameter studies that simulate: (1) hurricane-induced storm surges, waves and
winds, and the land dissipation effect on wind; (2) the effects of these features and inlet-bay
configuration  on  open-coast  storm-surge  hydrographs.  To  validate  simulation  results,
researchers employ historical data of the effects of  Hurricane Ivan on both bays. Figure 9
shows the terms highly associated with the bays and their semantic relations.
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Figure 9. Semantic network of the terms associated with the Escambia and Pensacola bays.

The bays in the second cluster are involved in the topic of Integrated Coastal Management
(ICM).  Since  the  environmental  condition  of  the  Victorian  coast  (Australia)  has  not
improved despite thirty years of ICM, case studies have been carried out in different coastal
environments located on the Port Phillip and Western Port bays: a coastal headland (Point
Nepean),  a  coastal  lakes  system  (Gippsland  Lakes),  and  an  urbanising  coastal  region
(Geelong  region).  These  environments  were  examined  to  develop  an  approach  that
incorporates ICM in a Sustainable  Coastal  Planning,  which responds to the pressures of
urban growth, tourism, decline in water quality, climate change on coasts, coastal planning,
and environmental protection (Figure 10).
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Figure 10. Semantic network of the terms associated with the Port Phillip and Western Port bays.

In the third cluster,  Greenwich and  Narragansett  bays are sites for  the study of  benthic
geologic habitats, namely, spatially recognizable areas in bay floors with special geologic
and  biologic  characteristics.  These  habitats  are  identified  by  using  imagery,  and  then
classified according to criteria such as sediment particle size (Figure 11).
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Figure 11. Semantic network of the terms associated with the Greenwich and Narragansett bays.

In the fourth cluster,  San Francisco and  Suisun bays are involved in research studies to
determine whether the timescale dependence of forcing mechanisms on suspended sediment
concentration (SSC) is typical in estuaries, based on SSC data. Of the forcing mechanisms,
several  tend to be concurrently active in estuaries,  rather than only one.  Multiple active
forcing  mechanisms  have  been  observed  in  estuaries,  but  the  specific  mix  of  active
mechanisms is different in each (Figure 12).
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Figure 12. Semantic network of the terms associated with the San Francisco and Suisun bays.

Finally,  in  the  fifth  cluster,  Bay  of  Fundy and  Hudson  Bay are  low  wave-energy
environments with large sedimentation rates and tidal ranges, which originate tidal flats and
tidal marshes. The Bay of Fundy is a vertically mixed estuary. With limited freshwater inputs
and the largest tidal ranges in the world (over 15 meters), it is used to generate electricity,
thanks to a Straflo turbine. These strong tides also erode joint planes (vertical cracks) of
cliffs on the bay. As a result, joint planes enlarge and become caves, which erode further and
form arches.  When the roof of  these arches collapses,  the stacks on the bay are formed
(Figure 13).
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Figure 13. Semantic network of the terms associated with Bay of Fundy and Hudson Bay.

Conclusions
To extract knowledge for the semantic frames or conceptual structures (Faber, 2012) that
underlie the usage of named bays in Coastal Engineering texts, a semi-automated method for
the extraction of terms and semantic relations was devised. The semantic relations linking
concepts in the semantic frames were manually extracted, based on the corpus analysis of
knowledge-rich  contexts  (Meyer,  2001),  a  time-consuming  task  that  is  essential  for  the
explanatory adequacy of frames (Faber, 2009). In future research, the knowledge patterns by
León-Araúz, San Martín & Faber (2016) for the automatic extraction of semantic relations
will be tested.
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The method for the extraction of terms closely associated with named bays combined
selection procedures for both terms and bays, with the use of a count-based DSM, weighted
by a log-likelihood association measure. The selection of 29 named bays from an initial set
of 55 bays with an occurrence frequency greater than 5 was performed by using Moisl’s
(2011) statistical  method. It  consisted in  determining which bays had suitable  document
lengths for accurate estimation purposes. This bay selection procedure, along with a matrix
normalization by  log-likelihood measure, yielded reliable clustering results when the bays
were automatically grouped based on their shared terms. Surprisingly, the normalization by
mean document length, widely used in Information Retrieval, and suggested by Moisl (2011)
because  of  its  intuitive  simplicity,  did  not  achieve  the  desired  clustering  results.  This
reinforces  the  view  that  the  performance  of  conventional  procedures  used  in  Natural
Language Processing (NLP) largely depends on the nature of the task.

Regarding the term selection procedures,  of the five methods tested, that of Moisl
(2015,  pp.  77-93),  based  on  four  statistical  criteria,  obtained  the  best  performance  for
semantic  network  construction  when  qualitatively  compared  with  gold  standard  sets  of
terms. Nonetheless, for reliable bay clustering, the best term selection procedure was that of
Moisl (2011). This finding reveals that the best set of terms characterizing named bays is
different, depending on whether the ultimate goal is clustering or frame description.

The two methods for term selection including dimensionality reduction by UMAP
produced poor results. Since the reduction to two dimensions was probably insufficient, a
larger number of dimensions will be tested in the future. Moreover, Topic Modelling (Blei et
al., 2003), a domain-specific dimension reduction technique for texts, will be also applied.

Finally, the semantic frames in the previous section reflect that most terms related to
named  bays  are  multiword  terms  (MWT)  since  specialized  language  units  are  mostly
represented by such compound forms (Nakov, 2013). The MWT extraction was possible
because  they  were  previously  matched  and  joined  with  underscored  in  the  lemmatized
corpus, thanks to the list of MWTs stored in EcoLexicon. This implies that EcoLexicon is a
valuable resource for any NLP tasks related to specialized corpora on environmental science.
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Footnotes
2. http://olst.ling.umontreal.ca/cgi-bin/dicoenviro/search_enviro.cgi
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